metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mostafa M. Amini,^a Amirreza Azadmeher,^a Mohammad Yousefi,^b Shahrbano Foladi^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, ^bDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Tehran, Iran, and ^cInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 168 KMean σ (C–C) = 0.004 Å R factor = 0.028 wR factor = 0.069 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Diaquadichlorodiphenyltin(IV) 18-crown-6, $[SnCl_2(C_6H_5)_2-(H_2O)_2]\cdot C_{12}H_{24}O_6$, adopts an all-*trans* octahedral configuration at the Sn atom. The coordinated water molecule forms a pair of hydrogen bonds to the polyether to furnish a linear hydrogen-bonded chain structure. There are two half-molecules of each component in the asymmetric unit, with the Sn atoms and the centres of the crown ethers lying on inversion centres.

Diaquadichlorodiphenyltin(IV) 18-crown-6

Received 14 January 2002 Accepted 21 January 2002 Online 31 January 2002

Comment

Diorganotin dichlorides react with 18-crown-6 to furnish complexes in which the Sn atom interacts indirectly, through a coordinated water molecule, with the crown ether. Dimethyltin dichloride forms a monohydrate having the formulation $(CH_3)_2SnCl_2 \cdot H_2O \cdot \frac{1}{2}C_{12}H_{24}O_6$. The adduct features an unusual environment of water: the water molecules are engaged in twin three-centre hydrogen bonds, and the structure represents the first example of such an arrangement (Amini et al., 1984). A later account of the methylphenyltin dichloride analogue described a similar motif (Amini et al., 1994). With diphenyltin dichloride, this crown ether yields a dihydrated 1:1 complex in which the diorganotin skeleton has been assigned a linear configuration on the basis of the ^{119m}Sn Mössbauer quadrupole splitting (Smith & Patel, 1983). This feature is confirmed in the present crystallographic analysis.

The asymmetric unit of the title compound, (I), exists as two symmetry-independent halves of $(C_6H_5)_2SnCl_2\cdot 2H_2O\cdot 18$ crown-6 moieties (Fig. 1), with the Sn atoms located on a centre of inversion; in each of them, the coordinated water molecule forms a pair of hydrogen bonds to two ether O atoms of the crown ether. The hydrogen-bonding interactions lead to the formation of a linear chain structure (Fig. 2). The parent Lewis acid, diphenyltin dichloride, exists as two independent tetrahedral molecules [Sn-C = 2.105 (5)–2.119 (5) Å; Sn-

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEP (Johnson, 1976) plots of molecules a (top) and b (bottom) with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Cl = 2.336 (2)-2.357 (2) Å; Greene & Bryan, 1971]. Coordination of the water molecules to the Sn atom does not alter the Sn-C distances; however, the Sn-Cl distance is lengthened by about 10% in the title complex.

Experimental

The title compound was synthesized by the reaction of diphenyltin dichloride and 18-crown-6 in methanol (Smith & Patel, 1983). The reagents, in a 1:1 molar stoichiometry, were heated in the solvent; the product that deposited upon removal of the solvent was recrystallized from acetonitrile.

Crystal data

$[SnCl_2(C_6H_5)_2(H_2O)_2] \cdot C_{12}H_{24}O_6$	Z = 2
$M_r = 644.13$	$D_x = 1.522 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.0970 (6) Å	Cell parameters from 4783
b = 12.355(1) Å	reflections
c = 14.701 (1) Å	$\theta = 1.7-26.4^{\circ}$
$\alpha = 84.116 \ (2)^{\circ}$	$\mu = 1.14 \text{ mm}^{-1}$
$\beta = 82.041 \ (3)^{\circ}$	T = 168 (2) K
$\gamma = 75.302 \ (3)^{\circ}$	Plate, colourless
V = 1405.4 (2) Å ³	$0.49 \times 0.25 \times 0.04 \text{ mm}$

Figure 2

ORTEPII (Johnson, 1976) plot showing the hydrogen-bonded chain structure. H atoms are not shown.

Data collection

Siemens CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.605, T_{max} = 0.956$ 17544 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.069$ S = 1.045523 reflections 331 parameters H atoms treated by a mixture of independent and constrained refinement 5523 independent reflections 4296 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.4^{\circ}$ $h = -9 \rightarrow 5$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0355P)^2 \\ &+ 0.3568P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Sn1a-C1a	2.159 (3)	Sn1b-C1b	2.160 (3)
Sn1a-O1wa	2.253 (2)	Sn1b - O1wb	2.262 (2)
Sn1a-Cl1a	2.5521 (7)	Sn1b-Cl1b	2.5627 (7)
$C1a-Sn1a-C1a^{i}$	180.0	$C1b-Sn1b-C1b^{ii}$	180.0
C1a-Sn1a-O1wa	90.03 (9)	C1b-Sn1b-O1wb	89.49 (9)
C1a-Sn1a-O1wai	89.97 (9)	C1b-Sn1b-O1wb ⁱⁱ	90.51 (9)
C1a-Sn1a-Cl1a	89.72 (7)	C1b-Sn1b-Cl1b	90.07 (7)
C1a-Sn1a-Cl1a ⁱ	90.28 (7)	$C1b-Sn1b-Cl1b^{ii}$	89.93 (7)
O1wa-Sn1a-O1wa ⁱ	180.0	$O1wb-Sn1b-O1wb^{ii}$	180.0
O1wa-Sn1a-Cl1a	89.87 (5)	O1wb-Sn1b-Cl1b	90.31 (5)
O1wa ⁱ -Sn1a-Cl1a	90.13 (5)	$O1wb-Sn1b-Cl1b^{ii}$	89.69 (5)
Cl1a-Sn1a-Cl1a ⁱ	180.0	$Cl1b-Sn1b-Cl1b^{ii}$	180.0

Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1wa - H1a1 \cdots O1a \\ O1wa - H1a2 \cdots O3a \\ O1wb - H1b1 \cdots O1b \\ O1wb - H1b2 \cdots O3b \end{array}$	$\begin{array}{c} 0.84\ (1)\\ 0.84\ (1)\\ 0.84\ (1)\\ 0.84\ (1)\\ \end{array}$	2.00 (1) 1.93 (1) 2.02 (1) 2.11 (2)	2.823 (3) 2.766 (3) 2.842 (3) 2.891 (3)	165 (3) 172 (3) 165 (3) 155 (3)

The water H atoms were located and refined, subject to $O-H = 0.85 \pm 0.01$ Å and $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were constrained.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank Dr Jan Wikaira of the University of Canterbury, New Zealand, for the diffraction measurements, and Shahid Beheshti University and the University of Malaya (F0758/ 2001A) for supporting this work.

References

- Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291.
- Amini, M. M., Zuckerman, J. J., Rheingold, A. L. & Ng, S. W. (1994). Z. Kristallogr. 209, 682–684.
- Greene, P. T. & Bryan, R. F. (1971). J. Chem. Soc. A, pp. 2549-2554.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97–2. University of Göttingen, Germany.
- Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, P. J. & Patel, B. N. (1983). J. Organomet. Chem. 243, C73-C74.